Modelling of HF and UHF RFID Technology for System and Circuit Level Simulations

Oliver Soffke, Ping Zhao, Thomas Hollstein, and Manfred Glesner

3rd European Workshop on RFID Systems and Technologies, Duisburg, 12.–13. Juni 2007

Outline

- 1 Background and Methodology
- 2 Scattering Matrices and S-Parameters
- 3 Integration into Cadence Spectre
- 4 Channel Modelling
 - HF-Channel
 - UHF-Channel
- 5 HF-Systems
 - Maximise Power at Tag
 - A Simplified Model
- 6 Complete System
 - HF System
 - UHF System

7 Summary

Background and Methodology

- Simulation of RFID-tags within complete system
 - Analysis of system behaviour
 - Stepwise model refinement down to transistor level
- S-parameter models for circuit simulators
- Implementation with Verilog-A
 - Verilog-like syntax
 - Enables modelling of analog quantities
 - $\blacksquare Verilog + Verilog-A = Verilog-AMS$
- Extension of Verilog-A to wave domain
 - Incident wave a
 - Reflected/transmitted wave b
- Switch from a/b- to V/I-plane everywhere in model possible
- Modelling is performed in the appropriate domain
- Wave domain
 - UHF-channel Wave guide circulators, directional coupler, ...
- V/I-domain
 - HF-channel, LC-matching networks, circuits, ...

Brief Review: Scattering Matrix/S-Parameters

Mathematical: Linear transform from voltage and current to incident and reflected wave:

$$V = V_i + V_r$$
$$IZ_0 = V_i - V_r$$

Can be seen as: A wave V_i propagates along a transmission line with a characteristic impedance of Z_0 towards the port, and a wave V_r travels away from the port.

The classical two port equations relate the voltages and currents at the ports to each other (Z-, Y-, H- or G-Matrix).

The scattering matrix relates the incident and reflected waves at the ports to each other:

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \quad \text{mit} \quad a = \frac{V_i}{\sqrt{Z_0}}, \quad b = \frac{V_r}{\sqrt{Z_0}}$$

Scattering Matrices and S-Parameters in Verilog-A (I)

- Verilog-A enables multidisziplinary simulations
 Example: Mechanically loaded electrical engine and corresponding control electronics
- There are Nodes which are related to Disciplines
- For each Discipline a certain quantity is modelled as flow and a related quantity is modelled as potential

Examples.					
Flow	Potential				
Current	Voltage				
Force	Position				
Torque	Angle				
incident	reflected				
	Flow Current Force Torque incident				

■ The discipline "Waves" has been added

Evamplac

Scattering Matrices and S-Parameters in Verilog-A (II)

- Definition of wave quantities
 - Flow: Incident wave
 - Potential: Reflected wave

mydisciplines.vams

```
nature IncidentWave
units = (V/sqrt(Ohm));
access = A;
endnature
```

```
nature ReflectedWave
units = "V/sqrt(Ohm)";
access = B;
endnature
```

discipline waves potential ReflectedWave; flow IncidentWave; enddiscipline

- Converter from V/I to a/b
- Potential or flow can be assigned to a branch:

$$b = \frac{V + Z_0 \cdot I}{2\sqrt{Z_0}}$$
$$V = 2\sqrt{Z_0} \cdot a + Z_0 \cdot I$$

Two controlled potential sources

Flow-Potential-Converter

- Reflected/transmitted wave of module A represents incident wave of module B und vice versa
- This cannot be accomplished by simple connections
- A special "connection module" is required
 - $\rightarrow \ \mathsf{Flow-Potential-Converter}$

Flow-Potential-Converter

```
module FPX (W1, W2);
waves W1, W2;
branch (W1) W1port;
branch (W2) W2port;
analog begin
A(W1port) <+ -B(W2port);
A(W2port) <+ -B(W1port);
end
endmodule
```

- Maps reflected/transmitted wave of module A to incident wave of module B
- Consists of two controlled flow sources
- Connection with the controlled potential sources of the "normal" modules does not cause any problems

The model itself is described the following way (in case of a two port):

$$b_1 = S_{11}a_1 + S_{12}a_2$$

$$b_2 = S_{21}a_1 + S_{22}a_2$$

This can directly be implemented in Verilog-A:

Scattering Matrix Implementation

... B(W1Port) <+ laplace_nd(A(W1Port), Num11, Denom11); B(W1Port) <+ laplace_nd(A(W2Port), Num12, Denom12); B(W2Port) <+ laplace_nd(A(W1Port), Num21, Denom21); B(W2Port) <+ laplace_nd(A(W2Port), Num22, Denom22);

■ Can be easily extended to *N*-ports

HF-Channel

HF-Channel

```
module MutInd (P1, P2, S1, S2);
electrical P1, P2, S1, S2;
branch (P1, P2) Primary;
branch (S1, S2) Secondary;
...
analog begin
    V(Primary) <+ Lp*ddt(I(Primary)); // Self inductance
    V(Primary) <+ M*ddt(I(Secondary)); // Mutual inductance
    V(Primary) <+ Rp*I(Primary); // Wire resistance
    V(Secondary) <+ Ls*ddt(I(Secondary)); // Self inductance
    V(Secondary) <+ M*ddt(I(Primary)); // Mutual inductance
    V(Secondary) <+ Rs*I(Secondary); // Wire resistance
    end
```

endmodule

UHF-Channel

```
module channel(w1,w2,w3);
wave w1,w2,w3;
analog begin
   aF = -147.6 + 20^{*}\log(distance) + 20^{*}\log(freq) - 10^{*}\log(GT) - 10^{*}\log(GR);
   s = pow(10,(-aF/20));
   B(wreader) <+ s*A(wtransponder) + A(wnoise);
   B(wtransponder) <+ s*A(wreader) + A(wnoise);
end
endmodule
module Wavedelay(win,wout);
                                                    e^{-\alpha R}
                                                                    e^{-jkR}
wave win,wout;
. . .
analog begin
                                                Attenuation
                                                                     Delay
   B(wout) <+ absdelay(A(win),td);
   B(win) <+ absdelay(A(wout),td);
end
endmodule
```

HF-Systems: Maximise Power at Tag (I)

Available Power at Tag

$$P_{t} = \frac{|V_{t}|^{2}}{4 \cdot \Re\{Z_{t}\}} = P_{s} \cdot \frac{R_{s}\omega^{2}k^{2}L_{1}L_{2}}{R_{2}\left(\left(R_{s} + R_{1}\right)^{2} + \left(X_{s} + \omega L_{1}\right)^{2}\right) + \omega^{2}k^{2}L_{1}L_{2}\left(R_{s} + R_{1}\right)}$$

Ps: Maximum available power from interrogator

How to design the matching network of the reader antenne in order to maximise P_t ?

$$\frac{\partial P_t}{\partial R_s} = \frac{\partial P_t}{\partial X_s} = 0 \qquad \Rightarrow$$

Ideal source impedance for given P_s

$$R_{s,opt} = \sqrt{R_1^2 + \omega^2 k^2 L_1 L_2 \frac{R_1}{R_2}}$$
$$X_{s,opt} = -\omega L_1$$

HF-Systems: Maximise Power at Tag (II)

With optimally matched Interrogator:

$$Z_t^* = R_2 + \frac{\omega^2 k^2 L_1 L_2}{R_1 + \sqrt{R_1^2 + \omega^2 k^2 L_1 L_2 \frac{R_1}{R_2}}} - j\omega L_2$$

This is the impedance which the tag has to exhibit in order to transfer maximal power to it

Generally, the coupling k is not known a priori. Nevertheless, for weak coupling

$$Z_t^* \approx R_2 - j\omega L_2$$

can be assumed.

Correspondingly, the ideal source impedansce can be approximated by

$$Z_{s,opt} \approx R_1 - j\omega L_1.$$

Comparison: Opt. Solution vs. Other Cases

Driver 5 V, 3 Ω , 13.56 MHz; Q = 20; $R_2 = 4 \Omega$; $L_1 = L_2 = 2 \mu$ H; Voltage at R_L (V):

_	$R_L = 1 \text{ KM}$					
		k = 10.0 %	k = 5.0 %	k = 1.0 %	k = 0.5 %	k = 0.1 %
	1)	32.61	24.06	6.53	3.31	0.67
	2)	29.05	23.18	6.52	3.31	0.67
	3)	29.05	23.18	6.52	3.31	0.67
	4)	21.28	21.73	6.52	3.31	0.67
	5)	30.46	19.37	4.32	2.17	0.43
	6)	28.6	19.24	4.32	2.17	0.43

 $R_L = 10 \,\mathrm{k}\Omega$

10

	k=10.0%	k = 5.0 %	k=1.0%	k = 0.5 %	k=0.1%
1)	103.12	76.07	20.63	10.48	2.11
2)	91.85	73.3	20.63	10.48	2.11
3)	91.85	73.3	20.63	10.48	2.11
4)	67.3	68.73	20.63	10.48	2.11
5)	85.35	69.57	20.3	10.33	2.08
6)	59.96	64.3	20.3	10.33	2.08

1) Opt. Solution

2) Tag matched to $R_2 + j\omega L_2$, Interrogatori $\frac{1}{2}$ perfectly matched

3) Interrogator matched to $R_1 + j\omega L_1$, Tag perfectly matched

4) Interrogator matched to $R_1 + j\omega L_1$, Tag matched to $R_2 + j\omega L_2$

5) Tag: Capacitor $C_r = 1/(\omega^2 L_2)$, Interrogator perfectly matched

6) Interrogator matched to $R_1 + j\omega L_1$, Tag: Capacitor $C_r = 1/(\omega^2 L_2)$

Simplified Model

Negelcting the effect on the interrogator antenna yields the following equivalent circuit for the tag antenna

Comparison of this model with the previous results (given in parantheses):

	$R_L = 1 \mathrm{k}\Omega$				
	k = 10.0 %	k = 5.0 %	k = 1.0 %	k = 0.5 %	k=0.1%
4)	66.62 (21.28)	33.31 (21.73)	6.66 (6.52)	3.33 (3.31)	0.67 (0.67)
6)	43.45 (28.6)	21.73 (19.24)	4.35 (4.32)	2.17 (2.17)	0.43 (0.43)
	$R_L = 10 \mathrm{k}\Omega$				
	k=10.0%	k = 5.0 %	k=1.0%	k=0.5~%	k=0.1%
4)	210.65 (67.3)	105.33 (68.73)	21.1 (20.63)	10.53 (10.48)	2.11 (2.11)
6)	207.97 (59.96)	103.99 (64.3)	20.8 (20.3)	10.4 (10.33)	2.08 (2.08)

Mixed Model: System and Circuit Level

Voltage Suppy, Modulator and Clock Recovery

Simulation of Clock Recovery (within Complete System)

Code Generation for Simple Read-Only Tag

Simulation of the Model (k = 0.5 %)

System Model of UHF-Tag

- Tag currently realised as behavioural model
- Modelling performed almost completely in wave domain
- Enables automatic extraction of system features
 - e.g. Bit Error Rate BER
 - Analysis performed within "real" environment

Simulation of the Model: Modulation

Simulation of the Model: Demodulation

Summary

- Background: Simulation of RFID-Tags within complete system
- Theoretical analysis of HF-channel
 - Maximum transferrable power
 - Comparison of differnt designs
 - Neglecting the effect on the interrogator antenna yields a simplified model
- Mixed modelling enables stepwise model refinement
- Verilog-A is a good opportunity to use these models within conventional circuit simulators
- Mixed system and circuit model of an HF system
- Extension of Verilog-A by wave domain
- System model of an UHF system

? Thank You !

?

?