Optimal Impedance Matching in Passive UHF RFID Sensors

RFID SysTech 2007 R. Morales-Ramos,D. Puente,Juan A. Montiel-Nelson,H. Milosiu, andR. Berenguer

IIS

Fraunhofer Institut Integrierte Schaltungen

Centro de Estudios e Investigaciones Técnicas de Gi

- Passive UHF RFID Sensors
- Power Recovery System
 - As a DC source
 - As a Load for the Antenna
 - Problems to find Zin
- Method to find the Optimal Zin
- Results
- Conclusions

Passive UHF RFID Sensors

• Power Recovery System

- As a DC source
- As a Load for the Antenna
- Problems to find Zin
- Method to find the Optimal Zin
- Results
- Conclusions

Passive UHF RFID Sensors

- Passive UHF RFID tags:
 - Battery free
 - Operation range up to 15 meters (Atmel)
 - Data capacity

Wireless Sensors

Passive UHF RFID Sensors

- Passive UHF RFID Sensors
- Power Recovery System
 - As a DC source
 - As a Load for the Antenna
 - Problems to find Zin
- Method to find the Optimal Zin
- Results
- Conclusions

Power recovery system As a DC source

Power recovery system As a DC source

- Each operation modes can be modeled as a resistance
- V_{DC} >= 1.8 V in our technology for all Operation Modes
- Power Requirements: Minimum Power required on the Rload for a proper work of the RFID sensor

Power recovery system As a load for the antenna

- Maximum Power Transfer $\rightarrow P_{ant}=P_{in}$
- Conjugate Matching of Z_{ant} and $Z_{in} \rightarrow Matching$ Network

Z_{in} has to be known

Power recovery system As a load for the antenna

• Vin is the amplitude of the RF signal at the input of the Voltage Multiplier

Matching

- Vin is a function of:
 - Pin (Range, Link parameters, Reflections...)
 - Zin

- Passive UHF RFID Sensors
- Power Recovery System
 - As a DC source
 - As a Load for the Antenna
 - Problems to find Zin

Method to find the Optimal Zin

- Results
- Conclusions

Method to find the optimal Zin to match

• What defines Zin?

15

- Design of Voltage Multiplier
- $V_{in} \rightarrow P_{in} \rightarrow Range$, link parameters (Friis Formula)
- Operation Mode (Tag's Power Consumption)
- Which is the optimal Zin to match?

 - Link parameters
 → pre-defined (freq., gains,...)
 - The Optimal Zin is the one that for the longest range fulfills all the power requirements

Method to find the optimal Zin to match

- Analytical solution complex → non-linearity of the VM & dependence on Technology and architecture
- Solution:
 - 1. Measure-Simulate Z_{in} and V_{DC} for every operation mode and for a range of V_{in}
 - 2. Process the Data with the proposed Algorithm

Method to find the opti Impedance Table

- Voltage Multiplier → Black Box
- Range → each Vin represents a range (Friis Formula)
- Power Requirements \rightarrow Each Operation Mode modeled with a resistance R_{load}

Impedance Table

Voltage

Multiplier

V_{in}	R_{load}	V_{DC}	Zin
V1	R1	X ₁	Z ₁
V1	R2	X ₂	Z ₂
V1	R3	X ₃	Z ₃
V2	R1	X ₄	Z4
V2	R2	X ₅	Z ₅
Vn	R3	X _{3n}	Z _{3n}

Zin

V_{in}sen(wt)

Method to find the optimal Zin to match Algorithm

Brute-Force Algorithm

- Enumerate all the possible Z_{th} and ranges (V_{th})
- Calculate V_{in}

- Check the Power Requirements in the Impedance Table
- Solution: Z_{th} that fulfils the Power Requirements for the longest range

- Passive UHF RFID Sensors
- Power Recovery System
 - As a DC source
 - As a Load for the Antenna
 - Problems to find Zin
- Method to find the Optimal Zin
- Results
- Conclusions

Results

- Voltage Multiplier were designed in 0.35µm CMOS+Schottky process
- Impedance Table from the post-layout simulations

Voltage Multiplier matched to different Zin

Matching	Range (m)	Re(Z in) (Ω)	Im(Zin) (Ω)
Measure	3.75	856	1150
Active	3.40	320	1480
Algorithm	3.78	600	1100

Results

Useful to compare different architectures of VM under the same conditions

VM architecture	Range (m)	Re(Z in) (Ω)	Im(Z in) (Ω)
2 stages	4.3	600	1780
3 stages	3.8	600	1100
4 stages	3.4	360	800
6 stages	3.8	140	580

Conclusions

- The design of the Matching Network is not trivial (Influence of the range, power consumption, and voltage multiplier on the Z_{in})
- A method to find the Optimal Input Impedance of a RFID sensor was proposed
- The method was proved in 0.35 CMOS technology
- Useful to compare different VM

Optimal Impedance Matching in Passive UHF RFID Sensors

RFID SysTech 2007

R. Morales-Ramos ricmorales@iuma.ulpgc.es

IIS

Fraunhofer Institut Integrierte Schaltungen

Power recovery system As a load for the antenna

