

SYSTEMATIC THOUGHT LEADERSHIP FOR INNOVATIVE BUSINESS

Data-on-Tag: An approach to Privacy friendly Usage of RFID Technologies

Kerstin Werner

3rd European Workshop on RFID Systems and Technologies



Motivation

Data-on-Tag: An Approach to privacy friendly RFID Utilization

Summary and potential Future Work

Storage of RFID based Data on Networks to provide cross-company access (*Data-on-Network*)

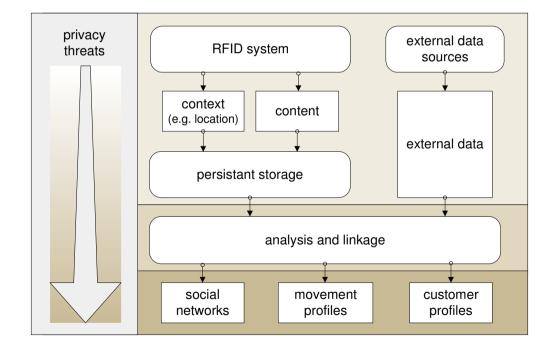
Characteristics

- Centralized data storage
- Exclusive storage of ID information on Tags
- Use of low cost RFID Tags possible
- Recently high efforts in standardization

Implications to privacy

Accumulating data includes information about an objects

- Context
- Content


Persistant storage on networks simplifies

- Linkage
- Analysis
- Distribution

of RFID based data

Threats emerge regarding

- Location Privacy
 - Movement Profiles
- Data Privacy
 - Social Networks

Personal Preferences in Shopping, Eating or Leasure Time Activities

RFID specific privacy requirements

Transparency	Easily pursuable usage of tags and intended purpose of stored data
Notification	Hindered unnoticeable utilization of RFID- technology
Opt-In	Indispensable prerequisite for the collection of individual-related data
Limitation to specified purpose	Beforehand declared usage to consumers
Appropriate security measures	Data protection regarding confidentiality, integrity and availability
No creation of individual-related profiles	Separate processing and storage of RFID- based data
Blocking mechanisms	Hindered undesired readouts
Deactivation mechanisms	Opportunities to deactivate RFID tags for consumers

Existing legal and technical measures

SAP RESEARCH

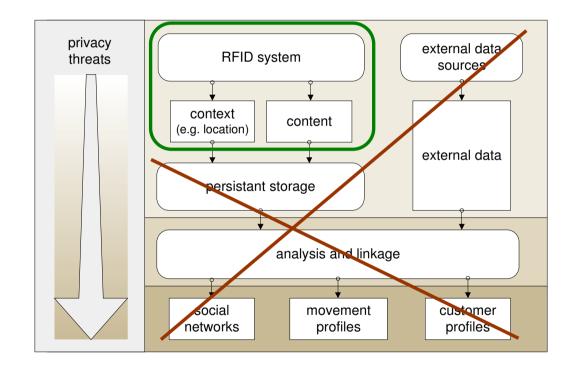
Examples of legal measures

Fair Information Practices

- Openness
- Individual Participation
- Accountability
- Collection Limitation
- Purpose Specification
- Use Limitation
- Security Safeguards

Examples of technical measures

Controlled Access to stored data

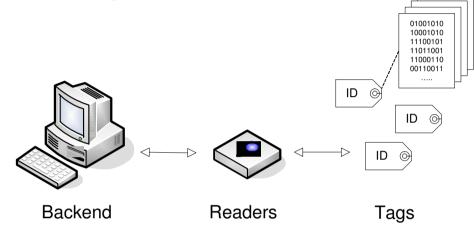

- Access Controls
- Coverage
- Encryption of stored data
- Blocker Tag
- Disabled data transmission
 - Kill command
 - Chemical or mechanical destruction

For further information see [Garfinkel05, Crispo06, Langheinrich05]

Data-on-Tag: Privacy friendly RFID utilization

SAP RESEARCH

Avoid centralized storage, Linkage and Analysis \rightarrow Exclusively store data on tags (*Data-on-Tag*)



Data-on-Tag: Privacy friendly RFID utilization

```
SAP RESEARCH
```

Avoid centralized storage, Linkage and Analysis \rightarrow Exclusively store data on tags (*Data-on-Tag*)

Characteristics

- Decentralized data storage
- Storage of any relevant data on tags
- Complex demands on usable tags
- Low efforts in standardization so far

Related work is provided by [Diekmann07]

Improved Control by Consumers

- Support of informational self-determination
- Clearly identifiable tags \rightarrow detachable and destroyable
- Ability to read, edit and delete stored data
- Ability to determine access (read or write)
 - Simple write protection bit
 - Fine-grained access control system

Increased Consumer Acceptance by Additional Value Provision

- Example: domestic appliances
 - determine which products they contain
 - provide relevant information (recipes, expiry dates, etc.)
- Improved recognition, sorting, and grouping of objects
 - \rightarrow Customization of object's digital properties

Benefits for Companies

- Possible usage in areas without or unstable network access
- Simplified co-operation with frequently changing partners
- Saved costs involved in establishing and maintaining network infrastructures
- Access Control: inferred by the physical access to Tags
- Self-controlling logistic networks:
 - Autonumous Smart containers
 - Digital packing slips

Anti Counterfeiting and Supply Chain Integrity Monitoring

- Active field of research: Prevention or detection of counterfeiting
- Two main approaches
 - Unclonable tags
 - E-Pedigree stored on tags
- Quality ensurance for consumers

Restricted Tracking and Tracing

- Storage of tracking history on tags
- Hybrid approaches
 - Information storage
 - Changing behavior

Increased Costs

- Larger memory capacity
- Necessity of read/write tags
- Appropriate security safeguards: shift of threats to tag level and the air interface
 - Encryption
 - Access control
 - Key management facilities
- Observable trend towards cheaper and more powerful computing devices

Advanced Requirements

- Usage of special hardware and software
- User acceptance, education and equipment [Crispo06]
 - ♦ Ease-of-use
 - Necessity of purchase incentives
- \rightarrow Influence on price, development and deployment efforts

Few Efforts in Standardization

- Current focus on Data-on-Network facilitates production and sales
- Obstacles in Data-on-Tag standardization:
 - Context dependent varying of stored data
 - Low industry adoption so far
- Need of increased attention to Data-on-Tag and its potentials in research and industry
- Positively influence costs by fostering standardizations

Present threats to privacy result to large extent from current RFID utilization

Existing legal protection measures have to be supported by appropriate technical measures

Measures representing a for customers prevent from technology acceptance

- Approach to privacy friendly RFID utilization: Data-on-Tag
 - No centralized storage and consequences
 - Advantages for customers and companies
- Facing existing drawbacks: hybrid approaches might be a compromise
- \rightarrow Need for greater attention in research, development and industry

[Diekmann07]

Thomas Diekmann; Adam Melski; Matthias Schuhmann: Data-on-Network vs. Data-on-Tag: Managing Data in Complex RFID Environments. In: hicss 0 (2007), S. 224a. – ISSN 1530–1605

[Langheinrich05]

Marc Langheinrich: Die Privatsphäre im Ubiquitous Computing – Datenschutzaspekte der RFID Technologie. In: FLEISCH, Elgar (Hrsg.) ; MATTERN, Friedemann (Hrsg.): Das Internet der Dinge – Ubiquitous Computing und RFID in der Praxis. Springer-Verlag, 2005, S. 329–362

[Garfinkel05]

Simson Garfinkel; Beth Rosenberg: RFID. Applications, Security, and Privacy. Addison-Wesley Longman, Amsterdam, 2005. – ISBN 0321290968

[Crispo06]

Bruno Crispo; Rutger Hofman; Andrew Tanenbaum: A Platform for RFID Security and Privacy Administration. In: Proc. USENIX/SAGE Large Installation System Administration conference. Washington DC, USA, December 2006, S. 89–102

Questions and discussion

