



# Tracking and Tracing in Production Scenarios with passive RFID Transponder

3<sup>rd</sup> RFID Workshop for RFID Systems and Technologies
Duisburg – Fraunhofer IMS
12.06.07 – 13.06.07

**Christian Gorldt,** Dieter Uckelmann, Uwe Hinrichs, Jan Topi Tervo University of Bremen, LogDynamics Lab, BIBA-IPS Email: gor@biba.uni-bremen.de



#### **Overview**



- **Objectives**
- Introduction to RTLS
- RSSI based system
- Vehicle tracking
  - **Hybrid RTLS**



# **University of Bremen**





- The University of Bremen was founded in 1971.
- Research and teaching are characterised by interdisciplinary as well as practice-oriented project studies - known as the "Bremen Model" - which enjoys a high degree of acceptance in the academic world as well as in business and industry.
- As the centre of science for North West Germany, Bremen University is a place of research for 1,700 scientists, a place of study for nearly 22,000 students, a place of work for more than 1,100 employees.
- The University has 12 Faculties representing various sciences, among them the Faculty for Production Engineering



# **Bremen Research Cluster for Dynamics in Logistics**





# **Objectives**



- Evaluation and testing of low-cost RF solutions for location tracking
- Use case
  - Production line
  - Slow, linear movement
  - Vehicle tracking







# **Approaches of RF location systems**



#### **Established techniques**

- Cell-of-origin (transponder-of-origin)
- Time of arrival (TOA)/
   Time difference of arrival (TDOA)
- Signal strength triangulation (RSS, received signal strength)





## **RSSI** based system



- Measurement of "Received Signal Strength Indicator" (RSSI) of backscatter signal in order to indicate the distance to next workstations
- Integrated in a slow production line with linear movement







# **RSSI** based system







# **Setup at the LogDynamics Lab**









# **Setup at the LogDynamics Lab**







#### RSSI as indictor for distance to the antenna







#### Tag placement vs. signal strength







#### Utilizing two tags to achieve better coverage







# **Utilizing passive RFID for locating (CoO)**







RFID-antenna (including range)

RFID-transponder



workstation



# **Vehicle tracking**



- Solution for internal production and warehouse logistics with chaotic storage system
- Based on the utilisation of shop floor vehicles
- Passive Transponders for tracking and tracing of vehicles and products
- UHF lables to identify the assets, LF glass transponders discharged in the ground to locate the fork lift truck
- A sensor measures the horizontal distance between fork and cargo



# **Vehicle tracking**







# **Hybrid RTLS**



- Hybrid solution with passive RFID and GPS
- Examined in an europe-wide network for vehicle track and trace
- Expected improvements:
  - Enhancement of data quality
  - Acceleration of processes
  - Reduction of processes
  - Increase of transparency in the processes



# **Hybrid RTLS**







#### **Conclusion**



- There is no plug and ident for RTLS
- Pre-testing in defined test set ups will bring the best combination of technology and hardware
- For an integrated visibility it is necessary to locate the objects indoor and outdoor
  - → combination of different RTLS systems



# The Global RF Lab Alliance (GRFLA) Creating a network of excellence among international RF Labs



- What is the Global RF Lab Alliance (GRFLA)?
  - The GRFLA is confederation of RFfocused labs
  - Purpose is to provide a mechanism for communication and collaboration among RF labs
  - GRFLA members share resources, such as students and professors, and collaborate (as appropriate) on research projects
  - Each participating lab will maintain its own identity, yet hold membership in the GRFLA

- Why is the GRFLA needed?
  - Little collaboration among the RF labs on a a global basis
  - Duplicate research
  - Sub-optimization of research funding
  - Difficult for individual labs to handle projects of sufficient magnitude
  - Slow dissemination of research results to industries





#### **Founders**

LogDynamics

- Asia
  - Chinese Academy of Sciences' Institute of Automation (CASIA)
  - Hon Kong University of Science and Technolog
  - Pusan National University
- Europe
  - University of Bremen
  - University of Parma
- USA
  - University of Arkansas
  - University of Florida
  - Georgia Institute of Technology









UNIVERSITÀ DEGLI STUDI DI PARMA









## Take-aways?



RFID TO

http://www.logdynamics.de/ http://biba.uni-bremen.de http://www.grfla.org



# Thank you for your attention

Christian Gorldt Phone: ++49 421 218 5580 gor@biba.uni-bremen.de



