4th European Workshop on RFID Systems and Technologies Freiburg, Germany June 10th to June 11th, 2008

A SOAP capable HF-RFID-Reader

Andreas Löffler

Friedrich-Alexander-University Erlangen-Nuremberg
Germany

- Motivation
- System Overview
- ▶ Hardware Structure
- Software Structure
- ▶ RFID and SOAP
- Web Server
- Summary
- ▶ Future Work

Motivation

Design of an HF-RFID reader with following most important constraints:

- Simple setup of an RFID reader system with multiple readers
- Easy integration in existing systems
- "open" standard communication via Ethernet (TCP/IP)
- Flexible software architecture to easily extent the system for future releases

- Motivation
- System Overview
- ▶ Hardware Structure
- Software Structure
- ▶ RFID and SOAP
- Web Server
- Summary
- ▶ Future Work

System Overview

HF-RFID reader:

- SOAP web service, Web Server, Telnet server
- ISO 15693 and ISO 14443 at 13.56 MHz

- Motivation
- System Overview
- Hardware Structure
- Software Structure
- ▶ RFID and SOAP
- Web Server
- Summary
- ▶ Future Work

Hardware Structure

- Microcontroller
- JTAG
- Power: 5 V and 3.3 V
- USB module
- Ethernet module
- RFID module
- Antenna / Matching Network

Hardware Structure (cont'd)

- Microcontroller
- JTAG
- Power: 5 V and 3.3 V
- USB module
- Ethernet module
- RFID module
- Antenna / Matching Network

- Motivation
- System Overview
- ▶ Hardware Structure
- Software Structure
- ▶ RFID and SOAP
- Web Server
- Summary
- ▶ Future Work

Software Structure

Firmware requirements:

- Easy extension for applications and hardware-drivers
- flexible connection of different communication interfaces
- Encapsulation in modules

Hardware: Ethernet, USB, Microcontroller, RFID-Reader

▶ HAL (Hardware abstraction layer): hardware driver to encapsulate the hardware access for the communication layer

- Communication layer: evaluation of inputs and generation of outputs
 - → provides transparent access for the applications

Application layer: process commands, generates driver calls and returns results. Applications are Web Server, SOAP Web Service, ...

Example of a SOAP request:

- Motivation
- System Overview
- ▶ Hardware Structure
- Software Structure
- RFID and SOAP
- Web Server
- Summary
- ▶ Future Work

RFID and SOAP

Introduction to SOAP:

- "Simple Object Access Protocol"
- SOAP is a web service
- Communication via XML-based data
- Data Transfer via Internet protocols such as http, smtp, ... over TCP/IP
- No problems regarding proxies and firewalls
- SOAP is platform and language independent
- Defined by World Wide Web Consortium (W3C)

RFID and SOAP (cont'd)

Embedding the readers as web services in ...

Introduction to SOAP

How does SOAP work?

- (1) SOAP-Client (application, computer) requests WSDL-file from reader
 - WSDL contains description of the SOAP web service
 - Function definitions, address, ...

PC/Application/...
SOAP-Client

RFID Reader

Introduction to SOAP (cont'd)

- (1) SOAP-Client (application, computer) requests WSDL-file from reader
- (2) The RFID reader (with SOAP web service) returns WSDL-file
 - SOAP-Client generates function definitions from WSDL-file
 - SOAP-Client extracts address of the RFID reader

PC/Application/...
SOAP-Client

RFID Reader

Introduction to SOAP (cont'd)

- (1) SOAP-Client (application, computer) requests WSDL-file from reader
- (2) The RFID reader (with SOAP web service) returns WSDL-file
- (3) The SOAP-Client generates SOAP-requests and the RFID reader replies with SOAP-responses

Implementation of SOAP

Software which supports SOAP:

Java

LabVIEW

.NET

C/C++/C#

PHP

No additional drivers

Advantages of SOAP:

OS independent

Use of XML data
 provides interfaces for human-machine and machine-machine

 communication

- Easy implementation into existing (RFID) systems
- Easy to create new RFID infrastructure systems

Integration of the SOAP RFID system in Java mobile (Emulation):

MIDlet View Help

Integration of the SOAP RFID

```
Analyzer 📗 🎩 - 💹 - 💆 🔁
    import javax.microedition.midlet.*;
    import javax.microedition.lcdui.*:
    import org.netbeans.microedition.lcdui.SplashSc
 □ /**
    * @author hoffmann
   public class HelloMIDlet extends MIDlet impleme
        private boolean midletPaused = false;
        private String command;
        Generated Fields
        public void run()(
                String ret = "";
            exec cmd Stub rfi stub = new exec cmd S
            rfi stub. setProperty(exec cmd Stub.SES
            //textBox.setString(rfi_stub.exec_fkn('
            ticker.setString(ret = rfi_stub.exec_f)
            splashScreen.setText(ret);
            } catch (Exception exception) {
              //ticker.setString(exception.toString
                splashScreen.setText(exception.toSt
         * The HelloMIDlet constructor.
 Ģ
        public HelloMIDlet() {
        Generated Methods
         Generated Method: initialize
Einstellungen\hoffmann.LIKE\workspace\netbeans WS\HelloWor
.ocalhost:8082/servlet/org.netbeans.modules.mobility.projec
nte und Einstellungen\hoffmann.LIKE\j2mewtk\2.5.2\appdb\De
essage routing support
ty security domain
essage routing support
```

bile (Emulation):

16:45:42

- Motivation
- System Overview
- ▶ Hardware Structure
- Software Structure
- ▶ RFID and SOAP
- Web Server
- Summary
- ▶ Future Work

Web server

- Realized as a compact web server in microcontroller
- Accessible via web browser: http://rfidreader/
- \triangleright Works on port 80 \rightarrow no problems with proxies and firewalls
- Execute all reader functions by calling
 - http://rfidreader/?*modul_function* e.g.:
 - http://rfidreader/?rfi_invreq to receive the transponder's UID or
 - http://rfidreader/?mcu_time to get the current time

- Motivation
- System Overview
- ▶ Hardware Structure
- ▶ Software Structure
- ▶ RFID and SOAP
- Web Server
- Summary
- ▶ Future Work

Summary

A SOAP capable RFID reader was introduced:

- HF-RFID system based on a 16-Bit microcontroller at 4 MHz with USB and Ethernet connectors
- Flexible software architecture (3 software layers: HAL, communication and application) to easy extend the system functions
- Implementation of a SOAP web service to be platform and OS independent (no extra drivers), only TCP/IP via http connection necessary
- Additional compact web server implementation
- Low power consumption: 535 μA in lowest power mode

- Motivation
- System Overview
- ▶ Hardware Structure
- Software Structure
- ▶ RFID and SOAP
- Web Server
- Summary
- Future Work

Future work

- Creation of independent RFID sensor nodes by creating an SOAP-based interconnection between the RFID readers
- Power over Ethernet capability to use only "one" cable
- Further reducing of size and power consumption
- Extension to more RFID standards and/or frequencies (realized: ISO 15693 and ISO 14443 at 13.56 MHz)

WSDL:

```
- <definitions targetNamespace="http://rfidreader:3333/SOAP/"</p>
   xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
   xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
   xmlns:s="http://www.w3.org/2001/XMLSchema"
   xmlns:s0="http://rfidreader:3333/SOAP/"
   xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
   xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
   xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
   xmlns="http://schemas.xmlsoap.org/wsdl/">
 - <types>
   - <s:schema elementFormDefault="qualified"</p>
      targetNamespace="http://rfidreader:3333/SOAP/">
     - <s:element name="exec_fkn">
      - <s:complexType>
        - <s:sequence>
            <s:element minOccurs="1" maxOccurs="1" name="command"
             type="s:string" />
          </s:sequence>
        </s:complexType>
      </s:element>
     - <s:element name="exec fknResponse">
      - <s:complexType>
        - <s:sequence>
           <s:element minOccurs="0" maxOccurs="1" name="exec fknResult"
             type="s:string" />
          </s:sequence>
        </s:complexType>
      </s:element>
     </s:schema>
   </types>
 - <message name="exec_fknSoapIn">
     <part name="parameters" element="s0:exec_fkn" />
   </message>
 - <message name="exec_fknSoapOut">
     <part name="parameters" element="s0:exec_fknResponse" />
   </message>
 - <portType name="exec_cmdSoap">
   - <operation name="exec_fkn">
      <input message="s0:exec_fknSoapIn" />
      <output message="s0:exec_fknSoapOut" />
     </operation>
   </portType>
 - <binding name="exec_cmdSoap" type="s0:exec_cmdSoap">
    <soap:binding transport="http://schemas.xmlsoap.org/soap/http"</pre>
      style="document" />
   - <operation name="exec_fkn">
      <soap:operation soapAction="exec_fkn" style="document" />
     - <input>
        <soap:body use="literal" />
      </input>
     - <output>
        <soap:body use="literal" />
      </output>
     </operation>
   </binding>
 - <service name="exec_cmd">
   - <port name="exec cmdSoap" binding="s0:exec cmdSoap">
      <soap:address location="http://like188:3333/SOAP"/>
     </port>
   </service>
```

</definitions>

Appendix

SOAP-Request:

Appendix

SOAP-Response: