

Securing Passive RFID Tags Using Strong Cryptographic Algorithms

4th European Workshop on RFID Systems and Technologies

10-11 June, 2008, Freiburg, Germany

IAIK – Graz University of Technology <u>Martin.Feldhofer@iaik.tugraz.at</u> <u>www.iaik.tugraz.at</u>

About us

Graz University of Technology →
Faculty of Computer Science →
Institute for Applied Information Processing and
Communications (IAIK)

Research groups

- Crypto group (hash functions and block ciphers) Vincent Rijmen
- EGIZ (e-government)
- Trusted computing/Java security
- Network security
- VLSI group
 - Implementation of crypto algorithms
 - SCA/fault attacks and countermeasures
 - RFID security and tag design

RFID Security Research Projects

C@R: "Collaboration Rural"

IP in FP6; IAIK performs research towards asymmetric crypto in RFID

BRIDGE: "Building Radio frequency IDentification solutions for the Global Environment"

IP in FP6; IAIK is task leader for secure RFID tags

PROACT: Currently, local initiative (sponsored by NXP) to support RFID research and education @ TU Graz Aims to get European Center of Excellence ((PROACT))

SNAP: Secure NFC Applications (national funded project, local cooperation with NXP) SNAP

Outline

Motivation

Requirements for RFID tag hardware

Low-power design strategy

Security algorithms in hardware

Comparison of implementations

Implementation security

Conclusions

Questions

- Will every passive RFID tag has security features in a few years?
- What are the difficulties in designing hardware for passive RFID tags?
- Which cryptographic algorithm should be used?
- Why does the RFID industry does not have products with strong crypto?
- Are implementation attacks really a threat?
- Is this work theoretical research or has it practical relevance?

Why Security for RFID Systems?

Counterfeiting

Seven percent of world trade is counterfeited goods (ICC/2003)

- 500 billion USD in 2004 (TECTEM/2004)
- 5-10% of car parts (Commission EU/2004)
- 5-8% of pharmaceuticals (WHO/2002)
- 12% of toys in Europe (OECD/2000)

Problems

- High losses
- Decreases the value of brands
- Threat against public health and safety

Why Security for RFID Systems?

Privacy

Is "Big Brother" really watching you?

Monitoring of communication is easy

Contact less, no clear line-of-sight, broadcast signal

 Even tag-to-reader load modulation observable in 4.5m distance

Activity tracking of persons via UID Leakage of personal belongings data

→ It is useful to integrate security into RFID systems

Tag Prototype Development

Can be used for ...

- ... showing weaknesses in RFID systems
- ... evaluate security protocols
- ... testing of reader prototypes
- ... demonstrate new applications

IAIK DemoTags

- HF (13.56MHz) and UHF (860MHz) frequency range
- Programmable via microcontroller

Identification vs. Authentication

I'm

Identification

Claim to be somebody / something

Authentication

 Proof the claim (by special characteristic, shared knowledge, possession or trusted 3rd party)

Pass word (weak authentication)

- user ID + password
- interactive
- be aware of replay attacks!

Tag Authentication Protocol

Challenge-response (strong authentication)

- Proofs knowledge of shared secret key
- Requires random "challenge"
- "Response" depends on challenge and secret key (encryption result)
- Compatibility to existing standards

Secure RFID System Architecture

Requirements for a Secure RFID System

Security protocol

Challenge-response authentication

Cryptographic primitive

- Hash function, block cipher, universal hash function, public key algorithm
- "Lightweight" solution (HB, ...)

Standardized algorithm

- Analyzed by many crypto experts
- AES-128, SHA-1, SHA-256, MD5, Trivium, Grain

Strong cryptography

Appropriate key size (128 bits)

Authentication and/or anonymity

What about the implementation costs on an RFID tag?

RFID Tag vs. Contact-Less Smart Card

Common properties

- Passively powered (no active power supply)
- Communication over air interface

Challenges of Hardware Implementations

Power consumption

- Maximum 25 μW
- Determines operating range (~1m required)
- Below 15µA (1.5 V) mean current consumption
- 0.35 µm CMOS: ~15 D-FF @ 1MHz

Chip area

- Die size equals silicon costs (5-20 Cent)
- Less than 5000 gate equivalents for security

Size of 0.5x0.5mm² pin

Security level

- Standardized key length
- 112, 128 bits

2⁵⁵ odds of winning lottery AND being hit by lightning at the same day 2¹⁷⁰ number of atoms in the planet

BUT

- Very low data rates (26 kbps) → low clock frequency
- High number of available clock cycles

Low-Power Design for RFID Hardware

Not relevant for RFID tags

- Energy consumption per operation
- Power consumption per operation

Relevant for RFID tags

- Power consumption per cycle
- Mean current consumption must not exceed available energy in capacitor

Design Strategies for Crypto on Passive RFID Tags

Design on different levels

- System level
 - Protocol design, features of application (challenge-response authentication protocol)
- Algorithmic level
 - Select appropriate algorithm (standardized, secure)
- Architecture level
 - Data path structure (word width, serialization of algorithm)
- Circuit level
 - Avoid glitching activity
- Gate level (and below)
 - No influence because of provided standard cells

Low-Power Design

Power dissipation

- $P_{Total} = P_{Static} + P_{SC} + P_{Dynamic}$
- $P_{Dynamic} = C_L \cdot V_{DD}^2 \cdot f$

Design for power reduction

- Lowering V_{DD}
- Use lowest possible clock frequency (<100 kHz)
- Clock gating
- Avoiding glitching activity (sleep-mode logic)

Optimization goal

- Minimize triple (I_{mean} [µA], Chip area [GE], #Clock cycles)
- $P_{Dynamic} = C_L \cdot V_{DD}^2 \cdot f \cdot p_{sw}$

Semi-custom Design Flow

Why AES is Suitable for RFID Tags

Simplicity

- Symmetry
 - Round transformation
- Basic operations
 - Finite field GF(2⁸)

Flexibility

- Architecture
 - **8**-bit, 32-bit, 128-bit

SubBytes ShiftRows MixColumns AddRoundKey Plaintext Round transformation 10 times SubBytes Ciphertext

Balance

- Optimal relationship between flip flops and computational costs
- 256 bits memory and simple operations

Standardized

FIPS standard since 2001

AES Architecture

Results of TINA

AES-128 hardware module

Suitable for passive RFID tags

Chip area

- 0.25 mm²
- 3.400 GEs

Current consumption

- 3µA @ 100 kHz at 1.5 V
- Process: 0,35µm CMOS

Data throughput

1000 cycles / 128 bits

Comparison of Implementations

Algorithm	Chip area [GEs]	Ι _{mean} [μΑ @ 100kHz, 1.5V]	# Clock cycles
AES-128	3400	3.0	1032
SHA-256	10 868	5.83	1128
SHA-1	8120	3.93	1274
MD5	8001	3.16	712
Trivium	3090	0.68	(1,603) + 176
Grain	3360	0.80	(130) + 104
TEA	2633	3.79	289
ECC-192	23 600	13.3	500 000

Comparison of Different Algorithms

Hardware implementations

Implementation Security

Traditional attacks on security systems

- Cryptanalysis (mathematics)
- Strength of keys and algorithms

But weakest link in system decides about security

Implementation security also very important

Active attacks

- Fault analysis
- Physical probing

Passive attacks

- Side-channel analysis measuring
 - Power consumption
 - Electromagnetic radiation
 - Timing information
 - Error messages

Side Channels of Cryptographic Devices

Differential Power/EM Analysis

 Target of the attacks is an intermediate value that depends on the secret key

Why Does SCA Work?

The problem is the data depending power dissipation of the internal nodes of (CMOS) circuits

Transition of node value	Power consumption	
0 -> 0	P ₀₀	
0 -> 1	P ₀₁	
1 -> 0	P ₁₀	
1 -> 1	P ₁₁	

$$P_{01} >> P_{10} > P_{00}, P_{11}$$

$$P_{00} + P_{10} \neq P_{01} + P_{11}$$

Implementation of Countermeasures

"The goal of countermeasures against SCA attacks is to make the power consumption of the device independent of the intermediate values of the executed algorithm." [Mangard, Oswald, Popp; Power Analysis Attacks – Revealing the Secrets of Smart Cards]

Implemented countermeasures

- Hiding (Randomization)
 - Remove data dependency of power consumption
 - Shuffling of operations
 - Execution of dummy cycles
- Masking
 - Randomize intermediate values that are processed
 - Use an SCA-resistant logic style

Implementation Security Costs

Requires higher power consumption

5 times higher

Requires more chip area

5 times larger

Die photo of secure AES chip

Answers

- Will every passive RFID tag has security features in a few years?
 - Probably not, but many tags will have
- What are the difficulties in designing hardware for passive RFID tags?
 - Power consumption and chip area
- Which cryptographic algorithm should be used?
 - Challenge-response protocols with AES-128 (public-key crypto perhaps possible in a few years)
- Why does the RFID industry does not have products with strong crypto?
 - Too busy at the moment
- Are implementation attacks really a threat?
 - If it is worth the effort, yes
- Is this work theoretical research or has it practical relevance?
 - Yes, prototypes in real silicon show feasibility of strong crypto on passive RFID tags

Conclusions

Strong cryptography required for RFID systems
Design for low power consumption
Implementation of algorithms

AES-128

Implementation security

Contact information

Martin Feldhofer
 IAIK – TU Graz
 Martin.Feldhofer@iaik.tugraz.at

Acknowledgements:
Johannes Wolkerstorfer
Thomas Popp
Michael Hutter
Stefan Tillich
Manfred Aigner
Christian Rechberger

4th Workshop on RFID Security

9th - 11th July 2008 Budapest, Hungary

Radio Frequency Identification

Security

Data Protection

Applications

Protocols

Implementations

Attacks

http://events.iaik.tugraz.at/RFIDSec08

Sponsored by:

Organized by:

